2.3 Feature Selection

Discretization

Dimensionality Reduction

Determining linear features from white noise

Determining Non-Linear Input/Output Function

\(\text{The input/output function is: (where s}_1: \text{is the STA )}\)

\[ P(\text{spike } | \text{ stimulus}) \rightarrow P(\text{spike } | \text{ s}_1) , \text{where s}_1: \text{is the STA} \]

\(\text{This can be found from the data using Bayes' Rule:}\)

\[ P(\text{spike } | \text{ s}_1) = \frac{ P(\text{ s}_1 | \text{ spike})P(\text{spike}) } {P(\text{s}_1)} \]

Principal component analysis: spike sorting

Finding interesting features in the retina

Previous:2.2 Neural Encoding: Simple Models
Next:2.4 Variability